Experimental design

Social Image, Organisational Values and Inclusion: **Evidence from a Field Experiment**

Girum Abebe (World Bank) Siân Brooke (UvA) Tom Gole (QTC) Simon Quinn (Imperial) Tom Schwantje (Bocconi)

Institutions and Inclusivity

Women face significant barriers in both entrepreneurship and professional positions

• In particular in terms of access to finance

Institutions and Inclusivity

Experimental design

Women face significant barriers in both entrepreneurship and professional positions

• In particular in terms of access to finance

Many organizations seek to be more inclusive

• But rely on, potentially biased, individuals to make decisions

Institutions and Inclusivity

Experimental design

Women face significant barriers in both entrepreneurship and professional positions

In particular in terms of access to finance

Many organizations seek to be more inclusive

But rely on, potentially biased, individuals to make decisions

How can institutional design promote the inclusion of underrepresented groups?

- By promoting these organizational objectives
- While incorporating individuals' expertise

Field Experiment: Institutional Barriers to Inclusivity

Context

Experimental design

- A business plan competition in Ethiopia
- Young professionals compete for 50.000 Birr prizes (approx. 5 months median salary)

Field Experiment: Institutional Barriers to Inclusivity

Context

Experimental design

- A business plan competition in Ethiopia
- Young professionals compete for 50.000 Birr prizes (approx. 5 months median salary)

Experimental sample

- The 245 judges in this competition
- These are senior HR managers

Field Experiment: Institutional Barriers to Inclusivity

Context

Experimental design

- A business plan competition in Ethiopia
- Young professionals compete for 50.000 Birr prizes (approx. 5 months median salary)

Experimental sample

- The 245 judges in this competition
- These are senior HR managers

Gendered inclusion

- We focus on equal opportunity for male and female entrepreneurs
- In a setting with limited access to finance for female entrepreneurs

Institutional Features

How does communicating organizational values (promoting equal opportunity) affect evaluators?

• Treatment 1: Emphasizing the competition's commitment to equal opportunity

Institutional Features

How does communicating organizational values (promoting equal opportunity) affect evaluators?

• Treatment 1: Emphasizing the competition's commitment to equal opportunity

How do social image concerns influence decision-making?

• Treatment 2: Requiring judges to justify choices to peers after making them

Policy implications

Institutional Features

How does communicating organizational values (promoting equal opportunity) affect evaluators?

• Treatment 1: Emphasizing the competition's commitment to equal opportunity

How do social image concerns influence decision-making?

• Treatment 2: Requiring judges to justify choices to peers after making them

How do these factors interact to shape inclusive decision-making?

Treatment 3: Interacting these two treatments

Preview of results

Communicating organizational values benefits "good" female candidates

• Equalising their performance relative to "good" male candidates

Preview of results

Communicating organizational values benefits "good" female candidates

• Equalising their performance relative to "good" male candidates

Social image concerns:

• Increase agreement among judges, but not the performance of female candidates

Policy implications

Preview of results

Experimental design

Communicating organizational values benefits "good" female candidates

• Equalising their performance relative to "good" male candidates

Social image concerns:

• Increase agreement among judges, but not the performance of female candidates

The effect of the combined treatment

• Is marginally *smaller* than that of the individual treatments

Preview of results

Experimental design

Communicating organizational values benefits "good" female candidates

• Equalising their performance relative to "good" male candidates

Social image concerns:

• Increase agreement among judges, but not the performance of female candidates

The effect of the combined treatment

• Is marginally *smaller* than that of the individual treatments

These effects are driven by the last six rounds of the assessments

Where control group judges vote far less for female candidates

Preview of results

Experimental design

Communicating organizational values benefits "good" female candidates

Equalising their performance relative to "good" male candidates

Social image concerns:

Increase agreement among judges, but not the performance of female candidates

The effect of the combined treatment

• Is marginally *smaller* than that of the individual treatments

These effects are driven by the last six rounds of the assessments

Where control group judges vote far less for female candidates

The assessments poorly predict the participants' future outcomes

Contributions

We contribute to the empirical behavioural literature on the role of social pressure

Dellavigna et al, 2012, 2016; Gerber, Green and Larim. 2008; Ai et al. 2016; Charness and Holder 2019; Garicano et al, 2005; Fan et al. 2022; Kelley, Hip and Protsch 2024

We contribute to the literature on organizational messaging

Ashraf, Bandiera and Jack 2014; Flammer and Luo 2017; Khan 2020

We contribute to the literature on discrimination in access to finance

Brock and De Haas, 2023; Fisman et al. 2020; Alibhai et al, 2023; Battaglia et al. 2024; Aydin, Bircan and De Haas, 2024; Jung 2025; Ubfal 2025; Heberg, Tookes and Yimfor 2025

Interpreting the results

Experimental design

Experimental design

Main Results

Interpreting the results

Policy implications

The submissions

Experimental design

•00000000

We invite 100 candidates to participate in the competition:

- Highly educated (80% bachelor)
- On average 31 years old
- Mostly wage-employed (67%) or self-employed (20%)
- Median income 10,000ETB

The submissions

Experimental design

•00000000

We invite 100 candidates to participate in the competition:

- Highly educated (80% bachelor)
- On average 31 years old
- Mostly wage-employed (67%) or self-employed (20%)
- Median income 10,000ETB

They are selected based on their performance in a previous video-based experiment

- They submit a three-minute video as their proposal
- We invite fifty male and fifty female candidates

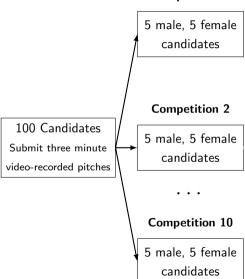
The submissions

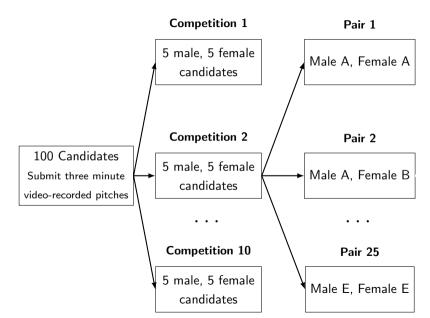
Experimental design

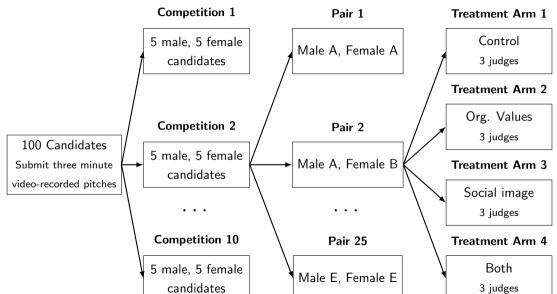
•00000000

We invite 100 candidates to participate in the competition:

- Highly educated (80% bachelor)
- On average 31 years old
- Mostly wage-employed (67%) or self-employed (20%)
- Median income 10,000ETB


They are selected based on their performance in a previous video-based experiment


- They submit a three-minute video as their proposal
- We invite fifty male and fifty female candidates


These videos are the inputs for our experiment

100 Candidates
Submit three minute video-recorded pitches

Competition 1

The experimental sample: The judges

We invite 245 experienced human resource managers as judges:

- Responsible for HR decisions at medium-sized to large Ethiopian firms
- 25% female

Experimental design

00000000

- On average 41 years old
- On average 20 years of professional experience
- Range of sectors
- Balanced across treatments Table

Pre-existing relationship through previous experiment

Control group protocol

Experimental design

000000000

Control group judges attend the experiment in groups of around 12 judges in a hotel in central Addis Ababa, they:

- Watch a video that explains the protocol
- Individually assess pairs of video-recorded proposals
 - Each pair consists of a male and female candidate
- Privately recommend one of the two candidates
- Each judge assesses 12 such pairs

The candidate in each competition with the most recommendations wins the prize

The assessments

Experimental design

The organisational values treatment

Experimental design

000000000

All judges watch a video of a well-known Ethiopian entrepreneur stressing the importance of access to capital

The organisational values treatment

All judges watch a video of a well-known Ethiopian entrepreneur stressing the importance of access to capital

The treatment extends this video with three statements:

- Female entrepreneurs have less access to capital
- This competition promotes equal opportunity for female entrepreneurs
- Judges need to consider many factors to make their decision

Experimental design

000000000

Experimental design

000000

Judges have to justify their choices to peers after making them.

Judges have to justify their choices to peers after making them.

For each assessment:

Experimental design

000000000

- We tell judges what other two judges assess the same pair using a photo CV
 - Stressing they may need to discuss their decision
- This triplet changes for each pair the judge assesses

Judges have to justify their choices to peers after making them.

For each assessment:

Experimental design

000000000

- We tell judges what other two judges assess the same pair using a photo CV
 - Stressing they may need to discuss their decision
- This triplet changes for each pair the judge assesses

After finishing the assessments:

• For one pair, judges are asked to justify their decision to peers

Judges have to justify their choices to peers after making them.

For each assessment:

Experimental design

000000000

- We tell judges what other two judges assess the same pair using a photo CV
 - Stressing they may need to discuss their decision
- This triplet changes for each pair the judge assesses

After finishing the assessments:

• For one pair, judges are asked to justify their decision to peers

Judges without the social image treatment provide this feedback individually.

Discussing the decision

Experimental design 0000000

The HR Consultants

00000000

Two HR consultants – our "experts" – also assess the videos:

- CEO of a HR consultancy, and HR manager of a large for-profit enterprise
- Selected by local partners for their expertise
- They give a score for the quality of each proposal

The HR Consultants

Experimental design

00000000

Two HR consultants – our "experts" – also assess the videos:

- CEO of a HR consultancy, and HR manager of a large for-profit enterprise
- Selected by local partners for their expertise
- They give a score for the quality of each proposal

This allows us to define an "expert pick" to proxy for quality

- This is the candidate with the higher average score in each pair
- Judges are not aware of the experts and their assessments

Road map

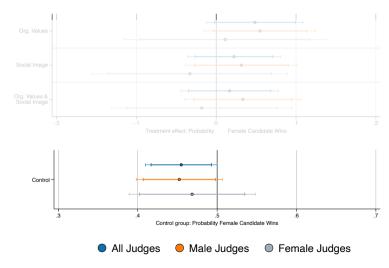
Experimental design

Main Results

Interpreting the results

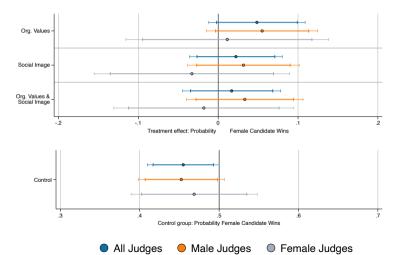
Policy implications

Result 1: No average effect on female candidates

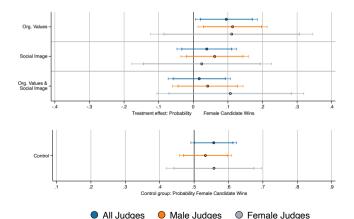

We run the following regression:

Experimental design

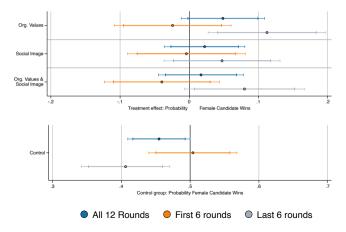
$$\begin{split} \texttt{Female_Wins}_{jp} = & \ \beta_1 \cdot \texttt{Organisational_Values}_j + \beta_2 \cdot \texttt{Social_Image}_j \\ & + \ \beta_3 \cdot \texttt{Combined_Treatment}_j + \mu_p + \varepsilon_{jp}, \end{split}$$


- j indexes judges and p indexes pairs of competing candidates
- We cluster errors at the judge level throughout
- We separately analyze the effect on male and female judges

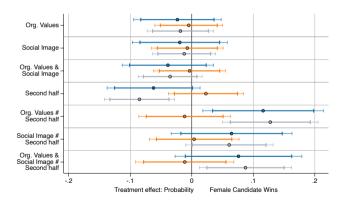
Result 1: No average effect on female candidates


Experimental design

Result 1: No average effect on female candidates


Result 2: Expert-favoured female candidates benefit from the org. values treatment

We run the same regression for the subsample with a female expert pick:



Result 3: Female candidates benefit from the treatments in later rounds

We run the same regression separately for the first and last six rounds:

Result 4: Treatments increase alignment with expert on female candidate in the last six rounds

Male Expert Pick

Female Expert Pick

Expert Pick

Triplet-level results

Experimental design

We also study the effect on agreement among judges composition:

- We find some evidence the treatments increase agreement among judges
- This is much more pronounced the later on average the three judges do this assessment

Triplet-level results

Experimental design

We also study the effect on agreement among judges composition:

- We find some evidence the treatments increase agreement among judges
- This is much more pronounced the later on average the three judges do this assessment

And - for judges with the social image treatment - we study the effect of having a female member on the triplet on male judges:

- We find no evidence having a female triplet member affects male judges
- Either with or without the organisational values treatment

Who benefits?

The important question is what candidates benefit from the treatments

We evaluate this heterogeneity in two ways:

- 1. Based on expected performance *without* the treatment [Abadie, Chingos and West, 2018]
- 2. Based on the characteristics that predict a female candidate winning [Lasso-Logit]

We take a large set of covariates X: experts' scores; expert and enumerator assessments; facial-expression features; measures of gendered-language

Experimental design

We take a large set of covariates X: experts' scores; expert and enumerator assessments; facial-expression features; measures of gendered-language

We train an elastic net to predict the chance the female candidate would win without the intervention:

$$s(X) = \Pr(\text{female wins} \mid \text{control}, X).$$

Experimental design

We take a large set of covariates X: experts' scores; expert and enumerator assessments; facial-expression features; measures of gendered-language

We train an elastic net to predict the chance the female candidate would win without the intervention:

$$s(X) = \Pr(\text{female wins} \mid \text{control}, X).$$

Split pairs into High vs Low expected probability of a female winner if in the control group

Experimental design

We take a large set of covariates X: experts' scores; expert and enumerator assessments; facial-expression features; measures of gendered-language

We train an elastic net to predict the chance the female candidate would win without the intervention:

$$s(X) = \Pr(\text{female wins} \mid \text{control}, X).$$

Split pairs into High vs Low expected probability of a female winner if in the control group Within each group G, we estimate treatment effects:

$$\widehat{\tau}(G) = \mathbb{E}[Y \mid Z = 1, s \in G] - \mathbb{E}[Y \mid Z = 0, s \in G].$$

Experimental design

We take a large set of covariates X: experts' scores; expert and enumerator assessments; facial-expression features; measures of gendered-language

We train an elastic net to predict the chance the female candidate would win without the intervention:

$$s(X) = \Pr(\text{female wins} \mid \text{control}, X).$$

Split pairs into High vs Low expected probability of a female winner if in the control group Within each group G, we estimate treatment effects:

$$\widehat{\tau}(G) = \mathbb{E}[Y \mid Z = 1, s \in G] - \mathbb{E}[Y \mid Z = 0, s \in G].$$

We use the Abadie, Chingos and West (2018) procedure for valid inference

Experimental design

Heterogeneity in treatment effects in the last six rounds

	Control	Org. Values	Social Image	Both	
Low control		6.75%	-0.18%	0.03%	
performance		[-1.44%, 18.24%]	[-8.68%, 10.77%]	[-8.95%, 8.48%]	
High control		15.71%	2.14%	6.43%	
performance		$[6.88\%,\ 22.39\%]$	$[-6.26\%,\ 10.00\%]$	$[0.04\%,\ 13.85\%]$	
	Control	Org. Values	Social Image	Both	
Low control performance	36.51%	43.26%	36.33%	36.54%	
High control performance	49.00%	64.71%	51.14%	55.43%	

Experimental design

Heterogeneity in treatment effects in the first six rounds

	Control	Org. Values	Social Image	Both	
Low control		-2.72%	0.67%	-2.39%	
performance		[-10.73%, 6.67%]	[-9.04%, 10.33%]	[-11.66%, 7.87%]	
High control		-1.01%	2.58%	1.08%	
performance		[-11.67%, 9.73%]	[-8.02%, 11.54%]	[-8.15%, 10.73%]	
	Control	Org. Values	Social Image	Both	
Low control performance	41.66%	38.94%	42.33%	39.27%	
High control performance	56.24%	55.23%	58.82%	57.32%	

Lasso-Logit

Experimental design

Next, we want to understand what the candidates that benefit look like:

• We do not use the experts scores in this analysis

Lasso-Logit

Experimental design

Next, we want to understand what the candidates that benefit look like:

We do not use the experts scores in this analysis

We estimate, denoting the treatment by \mathcal{Z}_j

$$\mathsf{Woman_Wins}_{jp} = \alpha + X_p^{\top} \boldsymbol{\beta}_1 + Z_j \, \boldsymbol{\beta}_2 + (Z_j X_p)^{\top} \, \boldsymbol{\beta}_3 \,. \tag{1}$$

Using a lasso-logit framework

Lasso-Logit

Experimental design

Next, we want to understand what the candidates that benefit look like:

• We do not use the experts scores in this analysis

We estimate, denoting the treatment by Z_j

$$\mathsf{Woman_Wins}_{jp} = \alpha + X_p^{\top} \beta_1 + Z_j \beta_2 + (Z_j X_p)^{\top} \beta_3. \tag{1}$$

Using a lasso-logit framework

We use stability selection (Meinhausen and Bullmann, 2010) to select the most relevant set of predictors

Who benefits from the organisational values treatment

Focussing on the organisational values treatment in the last six rounds, we find conditional on the treatment:

Women are rewarded less (punished) for:

For dressing well

Experimental design

Being arrogant

Who benefits from the organisational values treatment

Focussing on the organisational values treatment in the last six rounds, we find conditional on the treatment:

Women are rewarded less (punished) for:

For dressing well

Experimental design

Being arrogant

Women are rewarded more for:

- Discussing the business' operations
- Giving specific examples
- Being articulate

Who benefits from the organisational values treatment

Focussing on the organisational values treatment in the last six rounds, we find conditional on the treatment:

Women are rewarded less (punished) for:

For dressing well

Experimental design

Being arrogant

Women are rewarded more for:

- Discussing the business' operations
- Giving specific examples
- Being articulate

The algorithm captures no heterogeneity in treatment effects in the first six rounds

Huge (mixed) evidence base on interventions to reduce gender bias

Gender-blinded assessments (Goldin and Rouse 2000); Messaging to applicants (Delfino 2024, Leibrandt and List 2025); Quotas and peer review (Leibrandt 2018); Artificial intelligence (Hoffman 2018, Li 2020); Affirmative Action (Arcidiacono, P, 2005; Bleemer, 2022); Mission-driven motivation: Ashraf (2014a), Burbano (2016), Tonin and Vlassopoulos (2015), Khan (2025); Social distance and monetary incentives (Berg et al, 2017); Debiasing

Huge (mixed) evidence base on interventions to reduce gender bias

• But virtually no evidence on communicating these objectives to evaluators

Huge (mixed) evidence base on interventions to reduce gender bias

• But virtually no evidence on communicating these objectives to evaluators

Simple institutional statements stressing equal opportunity can improve outcomes for female entrepreneurs

Effectively combining individual expertise with organisational objectives

Huge (mixed) evidence base on interventions to reduce gender bias

• But virtually no evidence on communicating these objectives to evaluators

Simple institutional statements stressing equal opportunity can improve outcomes for female entrepreneurs

- Effectively combining individual expertise with organisational objectives
- In particular once evaluators get tired?

Huge (mixed) evidence base on interventions to reduce gender bias

• But virtually no evidence on communicating these objectives to evaluators

Simple institutional statements stressing equal opportunity can improve outcomes for female entrepreneurs

- Effectively combining individual expertise with organisational objectives
- In particular once evaluators get tired?
- Social image concerns have a similar, less pronounced effect

Experimental design

Huge (mixed) evidence base on interventions to reduce gender bias

But virtually no evidence on communicating these objectives to evaluators

Simple institutional statements stressing equal opportunity can improve outcomes for female entrepreneurs

- Effectively combining individual expertise with organisational objectives
- In particular once evaluators get tired?
- Social image concerns have a similar, less pronounced effect

Work to be done on this low-cost intervention to:

- See whether this replicates
- See how it affects morale and inclusion in organizations

Full statement

As you know, access to capital is limited for entrepreneurs in Ethiopia. This competition will provide an opportunity for entrepreneurs to access capital to start or grow their business. Considering equal opportunity: I realise you need to take into account a large number of factors when making your decision but would like you to keep in mind that when starting a business, female entrepreneurs face additional constraints due to lenders' biases. A recent World Bank report finds that male entrepreneurs are more likely to take out loans than female entrepreneurs. In terms of loan sizes, male entrepreneurs borrow about 50 percent more than female entrepreneurs. In this competition, we are committed to gender equality and want to promote male and female entrepreneurs equally. Your vote is important in deciding which individual will win the 50,000 Ethiopian birr prize; please consider your choices carefully.

	_					
	Overall	Control	Social	Org.	Both	p-value
			Image	Values	Treatmen	ts
Gender (1=male)	.74	.70	.80	.72	.74	.679
Has a bachelor's degree	.78	.77	.8	.81	.72	.672
Has formal management education	.76	.77	.78	.72	.79	.804
Judge age (years)	41	39	43	41	43	.246
Experience in current job (years)	6.1	6.5	6.8	5.9	5.3	.474
Total experience (years)	20	19	20	20	20	.981
Position of manager						
Most senior manager or owner	33%	30%	42%	28%	32%	.318
Finance and administration	15%	16%	15%	13%	16%	.941
HR Manager	32%	39%	25%	33%	32%	.505
Other	20%	16%	17%	26%	21%	.43
Department of manager						
Human resources	40%	49%	34%	40%	39%	.409
Administration	34%	28%	42%	31%	35%	.373
Finance	13%	14%	10%	13%	14%	.914
Other	13%	9%	14%	17%	12%	.621
Number of judges	245	57	59	72	57	

	All judges b/se	All judges b/se	Male judges b/se	Male judges b/se	Female judges b/se	Female judges b/se
Org. Values	0.049	0.045	0.055	0.051	0.011	-0.118
	(0.03)	(0.03)	(0.04)	(0.04)	(0.06)	(0.11)
Social Image	0.022	0.014	0.032	0.020	-0.033	-0.135
	(0.03)	(0.03)	(0.04)	(0.03)	(0.06)	(0.12)
Org. Values	0.017	0.013	0.033	0.036	-0.018	-0.151
& Social Image	(0.03)	(0.03)	(0.04)	(0.04)	(0.06)	(0.11)
Controls	No	Yes	No	Yes	No	Yes
Control mean	0.455	0.459	0.452	0.458	0.469	0.586
N	2631	2631	1962	1962	628	628

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

	All judges		Male	Male judges		Female judges	
	b/se	b/se	b/se	b/se	b/se	b/se	
Org. Values	0.073**	0.063*	0.094**	0.088**	0.101	0.039	
	(0.03)	(0.03)	(0.04)	(0.04)	(0.08)	(0.08)	
Social Image	0.047	0.037	0.062	0.061	0.066	0.050	
	(0.03)	(0.03)	(0.04)	(0.04)	(0.08)	(0.07)	
Org. Values &	0.036	0.021	0.049	0.046	0.108*	0.054	
Social Image	(0.03)	(0.03)	(0.04)	(0.04)	(0.06)	(0.06)	
Controls	No	Yes	No	Yes	No	Yes	
Control mean	0.570	0.580	0.545	0.549	0.572	0.617	
N	2331	2331	1708	1708	583	583	

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Table: The effects of treatments on making a unanimous decision

	unanimous b/se	$\begin{array}{c} unanimousWomanWins \\ b/se \end{array}$	unanimousManWins b/se	$\begin{array}{c} unanimous Expert Pick Wins \\ b/se \end{array}$
Org. Values	0.078	0.057	0.021	0.106**
	(0.05)	(0.04)	(0.04)	(0.05)
Social Image	0.098*	0.053	0.045	0.123**
	(0.05)	(0.04)	(0.04)	(0.05)
Org. Values &	0.080	0.034	0.046	0.083*
Social Image	(0.05)	(0.04)	(0.04)	(0.05)
Control mean	0.298	0.129	0.169	0.197
N	823	823	823	762

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Results Tables

00000

	Expert pick wins Bottom tercile Middle tercile Top tercile					
-	b/se	b/se	b/se	b/se	b/se	b/se
Org. Values	0.042	0.041	0.032	0.010	0.144**	0.140**
	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)
Social Image	0.039	0.048	-0.013	-0.040	0.114**	0.102*
	(0.05)	(0.04)	(0.05)	(0.05)	(0.06)	(0.06)
Org. Values &	0.008	-0.005	-0.001	-0.029	0.099	0.090
Social Image	(0.05)	(0.05)	(0.06)	(0.06)	(0.06)	(0.06)
Controls	No	Yes	No	Yes	No	Yes
Control mean	0.481	0.480	0.618	0.640	0.617	0.624
N	831	831	699	699	801	801

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Statement

Table: The effects of treatments on unanimity by score difference

Results Tables

00000

	Bottor	n tercile	Top t	ercile		
-	b/se	b/se	b/se	b/se	b/se	b/se
Org. Values	0.037	0.051	-0.086	-0.096	0.278***	0.279***
	(80.0)	(0.08)	(0.11)	(0.11)	(0.10)	(0.10)
Social Image	0.014	0.026	0.076	0.071	0.242**	0.235**
	(0.07)	(0.08)	(0.11)	(0.11)	(0.09)	(0.09)
Org. Values &	0.018	0.032	0.060	0.052	0.191*	0.195**
Social Image	(80.0)	(0.08)	(0.10)	(0.10)	(0.10)	(0.10)
Controls	No	Yes	No	Yes	No	Yes
Control mean	0.254	0.243	0.362	0.368	0.287	0.287
N	335	335	225	225	263	263

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Random Forest & Predictive Accuracy in Treatment Arms

Do judges coordinate on some different set of characteristics?

- Methodology:
 - Random forest algorithm run separately for each treatment arm
 - Measure out-of-bag (OOB) predictive accuracy (performance on unseen data)
- Interpretation of OOB Accuracy:
 - Higher accuracy → More consistent mapping from characteristics to votes
 - Lower accuracy → More idiosyncratic decision-making

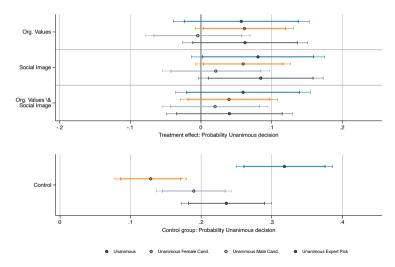
Random forest algorithm

Results are consistent with more idiosyncratic decision making in the control group:

- 55% in control
- 61% in organizational values
- 64% in social image
- 65% in combined treatment

Judges are not coordinating on some other set of characteristics in the control group.

Result 3: Treatments slightly increase agreement among judges

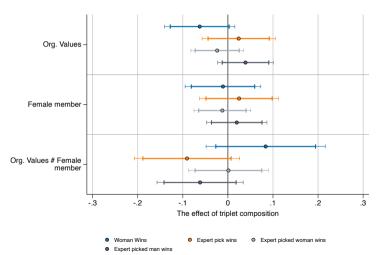

We run the following regression at the triplet-level:

$$\begin{split} \text{Unanimous}_{cp} = & \ \beta_1 \cdot \text{Organisational_Values}_c + \beta_2 \cdot \text{Social_Image}_c \\ & + \beta_3 \cdot \text{Combined_Treatment}_c + \mu_p + \varepsilon_{cp}, \end{split}$$

- ullet c indexes triplets and p indexes pairs of competing candidates
- We cluster errors at the grouped triplet level within a treatment throughout

Result 3: Treatments slightly increase agreement among judges (

Result 4: There is no heterogeneity by triplet's gender composition


We run the following regression for the subset of male judges:

$$y_{jp} = \beta_1 \cdot \texttt{Organisational_Values}_j + \beta_2 \cdot \texttt{Female_Member}_j \\ + \beta_3 \cdot \texttt{Organisational_Values}_j \cdot \texttt{Female_Member}_j + \theta \cdot \texttt{Score_Difference}_p + \varepsilon_{jp},$$
 (2)

We control for the difference in the average expert score difference

Result 4: There is no heterogeneity by triplet's gender composition

Frame Title